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Abstract. The phenomenon of avoided crossings of energy levels in the spectrum of quantum
systems is well known. However, being of an exponentially small order it is hard to calculate.
In particular, this is the case when the potential is generating a Schrödinger equation of a type
which is beyond the hypergeometric one. Recently, there have been attempts to understand this
phenomenon in connection with Heun-type differential equations. The most famous example of
this class is the quantum quartic oscillator which is governed by the triconfluent case of Heun’s
differential equation. In the following we consider situations where the fourth-order potential
has two minima and we calculate the avoided crossings of its eigenvalue curves in dependence
on the asymmetry and the barrier height between the two wells. The results are compared
with those obtained from an asymptotic approach of the problem for large values of the control
parameter that governs the barrier height.

1. Introduction

The phenomenon of avoided and hidden crossings of eigenvalue curves is deeply related
to quantum molecular physics and has been well known for decades. As far as we
know, Komarov and Slavyanov [8] were the first who attempted to get a mathematical
understanding of the phenomenon by means of asymptotic methods. Afterwards, Solov’ev
and his coworkers clarified the difficult items, developed new methods of calculation and
carried on to discuss not only problems of molecular physics but also collision problems in
atomic physics. Their main articles are [5, 14, 17].

The common property of all of these works is that the underlying eigenvalue problem
requires the treatment of linear difference equations of at most second order which can
be handled by well converging infinite continued-fraction methods. However, physical
problems that can be treated within these limits are rare.

Recently there have been efforts to establish a theory on the basis of which one can
elaborate methods to treat a much larger class of equations than it was possible hitherto.
This theory is deeply connected to the investigation of Heun’s class of differential equations
(being beyond the hypergeometric one) and mainly contains a classification on the basis of
their singularities and the investigation of confluence processes of these singularities (see
[15, p 291]) as well as a discussion on the central two-point connection problem of all of
the confluent cases of Heun’s equation (see [10–12]).
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As a first test on how the new methods work, we have solved the boundary-eigenvalue
problem of the general (asymmetric) quartic oscillator as the most famous non-trivial
example in quantum mechanics (see [9]). We could get the spectrum of the quartic
oscillator with an astonishingly low calculatory effort and an accuracy only limited by
the representation of numbers on the computer (see [1]).

However, there was still a basic problem in the above-cited papers of Lay and Bay that
was noted in other earlier works (see e.g. [13, p 1253]). It seems that we could recently do
an important step here as will be explained in the follows section. The problem can be stated
as follows. Suppose that we have a linear physical problem that can be separated such that
we eventually have to treat one or more linear ordinary second-order differential equations.
Ansatzes of solutions of such types of equations by means of series result in difference
equations, the order of which does not depend on the order of the underlying differential
equations but on the structure of their singularities. As a consequence the order of the
difference equations in general exceeds 2. But only in the case where the order is at most 2
is there a clear division between those particular solutions that generate eigensolutions of the
differential equation and those which do not. If the order of the difference equation exceeds
2 we have additional particular solutions the roles of which in the eigenvalue problem is
unclear. The relevance of the above-cited papers [1, 9–12] by Lay and coworkers consists of
clarifying this problem. Here, we go a step further in such that the role of these additional
particular solutions can be identified and eventually a conjecture can be formulated and
substantiated.

On the basis of the works on Heun’s differential equations as cited above, Slavyanov
and Veshev (see [16]) applied well approved asymptotic methods to give an asymptotic
solution of the problem of avoided crossings of eigenvalue curves for these equations. Our
success with the quartic oscillator encouraged us to give a solution of this problem which
is exact in the sense that no approximation entered in our theory and thus phenomena of
exponentially small orders can be calculated.

The paper is divided into two sections: in the following section we give a brief account
of the theory of the central two-point connection problem developed by Lay [10] and first
published in [11]. Thereafter, we are concerned with the numerical methods applied in
order to solve the boundary-eigenvalue problems which were developed mainly by Bay [2]
and first published in [1].

2. Theory

2.1. Two-point connection problems

Basically, there are two types of boundary-value problems for linear ordinary differential
equations in the complex domain, namely central and lateral connection problems. While
the latter ones occur mainly in Hill-type problems, which will not be considered here, the
former ones are related to differential equations with polynomial coefficients. In quantum
mechanical situations these are non-periodic potentials of the underlying Schrödinger
equation. In the following we give a short discussion of the central two-point connection
problem as far as it is necessary to understand our solution of the quartic oscillator.

Consider a linear ordinary homogeneous second-order differential equation with
polynomial coefficients thus having the form

P2(z)
d2u (z)

dz2
+ P1(z)

du (z)

dz
+ P0(z)u(z) = 0 z ∈ C. (1)

We suppose that the polynomialP2(z) has no zeros in common either with the polynomials
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P1(z) or P0(z). Under this condition the zeros ofP2(z) are the singularities of equation (1)
(see [15]). Moreover, the point at infinity can also be a singularity of equation (1). This
can be investigated by an inversion of (1)

ζ = 1

z

and a discussion of the pointζ = 0. In contrast to the ordinary points of a differential
equation (1) its singularities play a predominant role in the central two-point connection
problems. Whether they are elementary, non-elementary, regular or irregular (this is
determined by their s-ranks (see [15])) is crucial for the ansatzes of the local solutions. On
one side the type and the total number of singularities determines the type of equation (1)
and on the other side the sum of the s-ranks over all the singularities of a differential
equation (1) determines the class to which it belongs. For the hypergeometric class of
equations for instance the sum of the s-ranks over all the singularities is three and for this
class the central two-point connection problems are solved. The next higher class is Heun’s
equation and its confluent and special cases which we are dealing with here.

It is well known (see e.g. [3, p 210]) that every equation (1) can be transformed into
its normal form

d2y (z)

dz2
+Q(z)y(z) = 0 z ∈ C. (2)

When the s-rank of the singularity at infinity is at least 2, we have a quantum-mechanical
problem and thus a Schrödinger equation. Suppose now that equation (2) has precisely
one singularity located at infinity the s-rank of which is 4. This is the triconfluent case of
Heun’s differential equation (see [15]) which for−∞ 6 z 6 +∞, z ∈ R describes the
one-dimensional quartic oscillator

d2y (z)

dz2
+
(
E +

4∑
k=1

Dkz
k

)
y(z) = 0 z ∈ C,D4 ∈ R−. (3)

The central two-point connection problem for the triconfluent case of Heun’s equation (3)
can be stated as follows. Consider the ordinary pointz = 0 and the singularity atz = ∞
connected by the positive real axis. As the local solutions in the vicinity of the singularity
tell us, there is one fundamental system consisting of one solution that is exponentially
decreasing and one that is merely exponentially increasing. These particular solutions are
called ‘normal’. Suppose now that we either fix the value of the solution of (3) at the
origin or its derivative. In such a situation the central two-point connection problem of
equation (3) can be specified as follows. Assuming that the parametersDk, k = 1÷ 4 are
fixed we look for those values of the eigenvalue parameter,E, for which the solution of (3)
decreases exponentially asz tends to infinity along the positive real axis.

2.2. Jaffé expansions

We have shown [9, 1] that the solution of this problem is crucial for solving the quantum
quartic oscillator. In the following we give a brief account of it as well as an interpretation.
It is appropriate not to start with equation (3) but with the form that contains only the
irreducible parameters: these are the energy parameter, the asymmetry parameter and a
parameter that indicates the barrier height between the two wells of the quantum potential.
(This parameter is used as a large parameter in parameter asymptotic methods (see [16]).)

d2

dz2
9(z)+

(
−p

2

4
(z2− 1)2+ p[E − az]

)
9(z) = 0. (4)
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We consider equation (4) on the positive real axis [0,+∞). This equation is solved by
means of the ansatz

9(z) = exp
(p

2
(z − z3)

)
(z + 1)−a−1w(z). (5)

Ansatz (5) follows the singularity-analytic approach [10] by introducing an additional
singularity. In order to obey the boundary conditions it selects the exponentially decreasing
particular solution. Rearranging the singularities for the differential equation governing
w(z) we apply a Jaff́e transformation (see [11])

x := z

z + 1
(6)

that maps the real axis onto the compact interval [0, 1]. Now, we can expand the function
w(x) aboutz = x = 0 in terms of a Jaff́e expansion (see [6, 18, 9])

w(x) =
∞∑
n=0

anx
n (7)

that is uniformly convergent within the unit circle. Atx = 1 there is an irregular singularity
the s-rankR of which isR = 4. Therefore, expansions (7) in general diverge atx = 1. As
a result for the coefficientsan of (7) we get an irregular fourth-order difference equation of
the Poincaŕe–Perron type that can be solved recursively:

a0, a1 arbitrary

f0(0)a2+ f−1(0)a1+ f−2(0)a0 = 0

f1(1)a3+ f0(1)a2+ f−1(1)a1+ f−2(1)a0 = 0

f2(n)an+2+ f1(n)an+1+ f0(n)an + f−1(n)an−1+ f−2(n)an−2 = 0 n > 2

(8)

where we have forn > 2

f2(n) = 1+ α2

n
+ β2

n

f1(n) = −4+ α1

n
+ β1

n

f0(n) = 6+ α0

n
+ β0

n

f−1(n) = −4+ α−1

n
+ β−1

n

f−2(n) = 1+ α−2

n
+ β−2

n
.

The explicit dependences of the coefficientsαi, βi, i = −2÷+2 onE,p anda are given
in [12].

2.3. The Birkhoff set

Equation (8) is linear and thus its fundamental system consists of four particular solutions.
A fundamental system can be given explicitly in terms of a diverging series being asymptotic
for n tending to infinity [4]:

sl(n) = exp

( m=3∑
m=1

γlmn
4−m

4

)
nrl
[

1+ Cl1
n

1
4

+ Cl2
n

2
4

+ · · ·
]
. (9)

Normal solutions for difference equations of the Poincaré–Perron type in the form of (9)
are called Birkhoff solutions. The totality of all Birkhoff solutions is called a Birkhoff set
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(see [19, p 274]). The depencence of the coefficients on the parameters involved may be
seen from [10]. We thus can represent the general solution of (8) symbolically by

an =
4∑
l=1

Llsl(n) asn→∞. (10)

What is important here is that under the condition that

i=+2∑
i=−2

αi 6= 0

holds, we have

γ11 = 4
3

4

√√√√− i=+2∑
i=−2

αi = 4
3

4

√
2
√
−D4 = 4

3
4
√
p

γ21 = −γ11, γ31 = iγ11, γ41 = −iγ11

(11)

and

γ12 = −2α2+ α1− α−1− 2α−2
9
8γ

2
11

= −1

2

√
2
√
−D4 = −1

2
√
p

γ22 = γ12, γ32 = −γ12, γ42 = −γ12.

(12)

γl3 andrl, l = 1÷ 4 may be seen from [12] but are not of significance here.
From (11) we see thatγ11 takes a positive real value whileγ12 takes a negative real one.

Therefore, as a result, three of the four Birkhoff solutions (9) increase exponentially asn

tends to infinity while the fourth one (represented bys2(n) in (9)) decreases exponentially
in the same limit.

2.4. The eigenvalue condition

From Weierstrass’s convergence criterion (see e.g. [7, p 412]) we see that the Jaffé
expansions (7) converge atx = 1 when all the exponentially increasing particular solutions
of (8) are vanishing, i.e. if the condition

L1(E) = L2(E) = L3(E) = 0 (13)

holds with respect to (10). In this case Abel’s limiting value theorem (see e.g. [7, pp 179,
419]) tells us that the solution of (4) in the form of (5) decreases exponentially asz→∞
and thus is a solution of the quantum mechanical problem. However, condition (13) is too
restrictive since it consists of three single conditions while we have only one parameter to
vary, namelyE. If we restrict ourselves to the eigenvalue condition

L1(E) = 0 (14)

expansions (7) do no more converge atx = 1 and we can no longer apply Abel’s theorem.
In order to resolve this dilemma we tried to calculate the eigenvalue curves for the quartic
oscillator based on (14). The result was surprising: we got them with an extraordinary
accuracy [1]. This suggested that (14) was the exact eigenvalue condition and not only
an approximate one. In order to prove this we constructed the eigensolutions on the same
basis; and here we could see that, although series (7) diverges atx = 1, they represent
the eigen-solutions of the quantum mechanical problem. So, it turned out that with Jaffé
expansions we have anasymptoticrepresentation of the eigensolutions of the underlying
differential equation at the neighbouring singularityx = 1 andnot a convergingone.
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It is tempting to generalize the discovery discussed above to central two-point connection
problems of linear second-order differential equations (1) with polynomial coefficients
between an ordinary point or a regular singularity on one side of the relevant interval
and an irregular singularity on the other side the s-rank of which is arbitrary but finite. For
the sake of simplicity we assume that the differential equation has no other singularities.

What are the main elements and results? We once again can make an appropriately
generalized ansatz of the form of (5), a Jaffé transformation (6) and a Jaffé expansion (7).
The result for the coefficients of this expansion will also be irregular difference equations
of the Poincaŕe–Perron-type the order of which is the same as the s-rank of the irregular
singularity involved into the connection problem. For this equation a Birkhoff set also exists
consisting of Birkhoff solutions the number of which is equal to the order of the difference
equation. In the following we formulate a conjecture consisting of two parts. The first part
is about the number of the maximum solutions in such a sort of difference equations and
the second one is about the meaning of the additional particular solutions of this difference
equation occurring in addition to the minimum and the maximum one.

Conjecture.
(1) Under the conditions explained above exactly one maximum solution of the

difference equation exists.
(2) The (necessary and sufficient) eigenvalue condition for the connection problem

exhibited above is the vanishing of the maximum solution of the difference equation.

We would like to finish this section with a remark. Up to now, we have discussed
only thecentral two-point connection problemof the triconfluent case of Heun’s differential
equation. In order to solve the quantum mechanicalboundary-eigenvalue problemone has
to apply the above-exhibited method twice, namely on the positive and the negative real
axis, separately and then to match the corresponding Jaffé expansions atx = 0. This is
explained in more detail in the following section.

2.5. The quantum mechanical problem

We write the equation of the quartic oscillator with respect to [16] in the form of (4). For
positive real values ofp we have two potential wells in the vicinities ofz = ±1, where the
value ofp corresponds to the height of the barrier located atz = 0 between the two wells.
The parametera represents the asymmetry of the wells.

For the numerical calculations we split the quantum mechanical problem into two parts
and look separately for quadratic integrable solutions9+(p, a, z) on the positive real axis
and9−(p, a, z) on the negative real axis. This corresponds to two two-point connection
problems; one between 0+ and the singularity at+∞, the other between the singularity at
−∞ and 0−. The split problem is connected by the requirements that

9+|z=0 = 9−|z=0 (15)

and

d9+

dz

∣∣∣∣
z=0

= d9−

dz

∣∣∣∣
z=0

. (16)

From symmetry considerations it follows immediately that9−(p,−a,−z) ≡ 9+(p, a, z).
Following the approach outlined in section 2.2 we get the ansatz (5) for the two-point
connection problem of the positive real axis. Inserting (5) into (4) in conjunction with
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the Jaff́e transformation (6) and (7) we get the fourth-order difference equation (8). The
coupling conditions (15) and (16) yield

a+0 = a−0 (17)

and

a+1 +
(

1− p
2

)
a+0 = a−1 +

(p
2
− 1

)
a−0 (18)

respectively. In the symmetrical case (a = 0) of (4) the even eigenfunctions are represented
exclusively bya0 6= 0, a1 = 0 and the odd ones bya0 = 0, a1 6= 0. This suggests to define
two different coupling conditions for odd and even eigenvalues with an additional auxiliary
parameter for each case denoted byV (value) andG (gradient). To satisfy the conditions
(17), (18) we write

even→ a+0 = a−0 = 1 a+1 = G+
(

1− p
2

)
a−1 = G+

(p
2
− 1

)
odd→ a+0 = a−0 = V a+1 = 1+

(
1− p

2

)
V a−1 = 1+

(p
2
− 1

)
V

(19)

this may also be applied to the asymmetrical case. Now we proceed as follows. We
considerG (or V ) as additional parameters of the eigenvalue problem and ask for those
energy valuesE+(p, a,G) for which the ansatz (5) defines a quadratic integrable solution
on the positive real axis (right-hand eigenvalues). In a second step we consider the energy
valuesE−(p, a,G) yielding a quadratic integrable solution on the negative real axis (left-
hand eigenvalues). Since the procedure of calculation is the same for both cases, we confine
our discussion to the calculation of theE+(p, a,G).

3. Numerical results

3.1. Eigenvalues

We now consider the behaviour of the coefficientsa+n of series (7) for largen. Provided
that the parameterE+ is not an eigenvalue, this is governed by the maximum Birkhoff
solution s1(n) (9)–(12), i.e. the coefficients increase merely exponentially. An eigenvalue
corresponding to a quadratic integrable9+(z) is indicated by the vanishing of this maximum
solution. Since the contribution of the other Birkhoff solutions at sufficiently largen is
negligibly small, this is monitored by achange in signof the corresponding coefficients
a+n (E

+).
In a first step, we have calculated the coefficienta+200(E) with fixed parametersp, a,G

(figure 1) and used the zeros as approximations of the right-hand eigenvalues. (It will be
shown below thatn = 200 is sufficiently large in order to yield a high numerical accuracy
for the eigenvalues.)

For the following it is important to understand that by varying the additional parameters
G,V introduced above the zeros and thus the spectrum of the connection problem change
continuously.

In figure 2 we display in dependence on the parameterG the right-hand eigenvalues (full
curves) and left-hand eigenvalues (dotted curves). The spectrum of the quantum mechanical
problem is defined by the totality of the points of intersection of the full and dotted curves.
In particular, we see that the even eigenvalues,E0, E2, E4, of the symmetrical case of the
quartic oscillator (4) are related to the parameterG of the matching procedure. There are
no crossings for the odd ones; to get these we have to consider the coupling condition (19)
for the parameterV instead ofG.
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Figure 1. Coefficienta+200(E) for the parametersp = 15, a = 0, G = 0. The zeros of this
curve are the eigenvalues of the central two-point connection problem on the postive real axis.

Figure 2. Zeros of the functiona+200(E) = 0 (see figure 1) in dependence on the parameterG.
These eigenvalue curvesE±k (G) are calculated by Newton’s iteration of the coefficienta+200.
Full curve: E−k , dotted curve:E+k . The crossings of each pair of full and dotted curves at
G = 0 are the even eigenvaluesE0, E2, E4 of the quartic oscillator forp = 15 anda = 0.

The a-dependence of the spectrum is obtained by tracing these points of intersection
as they move by varyinga. For calculating the spectrum we have used Newton’s iteration
procedure to find the zeros ofa±n ; n = 200 as well as the points of intersection exhibited
in figure 2 as functions ofE,p, a. In figure 3 we present the spectrum for the parameter
p = 15. For higher energy levels, the gapδE of the avoided crossings increases while with
increasing asymmetry parametera the gaps decrease (see table 1). This is in a qualitative
agreement with the behaviour predicted in [16].

3.2. Eigenfunctions

Figure 4 shows the coefficientsa+n over n for the eigenvalueE0. For n > 100 the
maximum solution indicated bys1(n) in (7) dominates. Therefore,n = 200 was a
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Figure 3. Avoided crossings of the eigenvalue spectrumEk(a) of the quartic oscillator for the
parameterp = 15. The curves are numbered by the indexk.

Table 1. The gapδEk,k+1 of the avoided crossings in dependece on integer values of the
parametera and the eigenvaluesEk .

Asymmetry
Gap
δE a = 0 a = 1 a = 2 a = 3

δE0,1 7.1× 10−4

δE1,2 — 6.2× 10−3

δE2,3 4.8× 10−2 — 3× 5 10−2

δE3,4 — 7.6× 10−1 — 3.3× 10−1

Figure 4. Coefficientsa+n (E) in dependence onn at E ≈ E0 for the parametersp = 15 and
a = 0.

sufficiently large index for the preceding calculations. Forn < 100 we see the oscillating
and exponentially increasing but dominated particular solutions of (8) indicated bys3(n)

and s4(n) in (9). The eigenfunctions9k (full curves) of (4) can be approximated via
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Figure 5. Comparison of the eigenfunctions9k(z) at the avoided crossing pointsa = 0 (left-
hand side) anda = 1 (right-hand side), of the quartic oscillator (full lines) with an appropriate
arrangement of the related eigenfunctions of the harmonic oscillator (dotted curves).

(5). By using only the coefficientsa+n for n 6 100 where the maximum solution is not
yet predominant but the increasing oscillating solutions already have a marked influence
on the series. The dotted curves in figure 5 are drawn for comparison reasons. They
give approximations to the eigenfunctions of the quartic oscillator in terms of linear
combinations of eigenfunctionsψk of harmonic oscillators centred around the two wells
of the quartic one. In the following we give more details: first, we consider the left column
of pictures. They pertain to the asymmetry parametera = 0. The dotted curvesf0(z)

show the ground state90(z) = ψ0(z + 1)+ ψ0(z − 1). The dottedf1(z) displays the first
level as91(z) = ψ0(z + 1) − ψ0(z − 1). Eventually, the third level is approximated by
92(z) = ψ1(z+1)−ψ1(z−1). The pictures on the right-hand side show the corresponding
arrangement for the asymmetry parametera = 1.

As a conclusion, we can state that our method allows us to cope with exponentially small
effects in quantum systems. Moreover, the numerical calculations only require recursive
computations and Newton’s iteration. In a first step, we could confirm the asymptotic
results given by [16]. The application of the method to other problems in the realm of
quantum mechanics and mathematical physics in general will be an important issue of
further investigations.
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